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Abstract We report an application of the double expo-

nential formula to the numerical integration of the radial

electron distribution function for atomic and diatomic

molecular systems with a quadrature grid. Three types of

mapping transformation in the double exponential formula

are introduced into the radial quadrature scheme to gen-

erate new radial grids. The double exponential grids are

examined for the electron-counting integrals of He, Ne, Ar,

and Kr atoms which include occupied orbitals up to the 4p

shell. The performance of radial grid is compared for the

double exponential formula and the formulas proposed in

earlier studies. We mainly focus our attention on the

behavior of accuracy by the quadrature estimation for each

radial grid with varying the mapping parameter and the

number of grid points. The convergence behavior of the

radial grids with high accuracy for atomic system are also

examined for the electron-counting integrals of LiH, NaH,

KH, Li2, Na2, K2, HF, HCl, HBr, F2, Cl2, Br2, LiF, NaCl,

KBr, [ScH]?, [MnH]?, and [CuH]? molecules. The results

reveal that fast convergence of the integrated values to the

exact value is achieved by applying the double exponential

formula. It is demonstrated that the double exponential

grids show similar or higher accuracies than the other grids

particularly for the Kr atom, Br2 molecule, alkali metal

hydrides, alkali metal halogenides, and transition metal

hydride cations, suggesting that the double exponential

transformations have potential ability to improve the reli-

ability and efficiency of the numerical integration for

energy functionals.

Keywords Double exponential formula � Numerical

integration � Radial quadrature grid � Electron-counting

integral � Density functional calculation

1 Introduction

Density functional theory (DFT) represents the energy

components of a molecule as the functional of the electron

density and its derivatives. In the Kohn–Sham approxi-

mation, the exchange and correlation energies are calcu-

lated by numerical integration of the approximated

functional for the exchange and correlation terms, respec-

tively. Since the numerical integration is performed with a

quadrature grid over a molecule, the accuracy depends on

the number and distribution of the grid points. As the

number of grid points goes to infinity, the numerical inte-

gration approaches the exact solution. However, it is

desired to develop an integration scheme that gives accu-

rate results with a small number of grid points for an

application of the DFT method to large-scale and/or long-

time computations such as dynamics simulation of

biomolecules or materials.

A fuzzy cell method has been proposed to decompose

the multi-center integral for a molecule into the single-

center integrals for each atom [1]. The integrand of

molecular integral is partitioned to the atomic components.
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I ¼
Z

F r~ð Þd3r~ ð1Þ

F r~ð Þ ¼
X

A

FA r~ð Þ ð2Þ

FA r~ð Þ ¼ wA r~ð ÞF r~ð Þ ð3ÞX
A

wA r~ð Þ ¼ 1 ð4Þ

F r~ð Þ and FA r~ð Þ are an arbitrary multi-center function and

its single-center component associated with atom A,

respectively. wA r~ð Þ describes the nuclear weight function

for atom A to divide the whole system into the fuzzy cells.

The multi-center integral of Eq. 1 can reduce to a sum of

the single-center integrals.

I ¼
X

A

Z
FA r~ð Þd3r~¼

X
A

IA ð5Þ

The single-center integral of Eq. 5 is evaluated in the

spherical polar coordinate system centered on the nucleus

of atom A as follows.

IA ¼
Z1

0

Zp

0

Z2p

0

FA rA; hA;/Að Þr2
AdrA sin hAdhAd/A ð6Þ

The three-dimensional integral of Eq. 6 is approximated by

successive numerical integration for the two-dimensional

angular and one-dimensional radial parts using the n-point

quadrature formula with the weights wX and wr as given in

Eqs. 7 and 8.

�FA rAð Þ ¼
Zp

0

Z2p

0

FA rA; hA;/Að Þ sin hAdhAd/A

�
XnX

A

j¼1

wX
j FA rA;Xj

� �
ð7Þ

IA ¼
Z1

0

�FA rAð Þr2
AdrA �

Xnr
A

i¼1

wr
i
�FA rið Þ ð8Þ

X indicates a combined spherical variable of (h, /). nX
A and

nr
A are the number of grid points in the angular and radial

integration for atom A, respectively.

It is possible to efficiently integrate the angular part

given in Eq. 7 by using the angular grids developed by

Lebedev [2]. The Lebedev grids with various number of the

quadrature points on the surface of a unit sphere have been

constructed so as to be invariant under the octahedron

group with inversion. The smallest grid is the 6-point grid,

and the largest grid is the 5810-point grid [2–7]. Each of

the Lebedev grids can accurately integrate all the spherical

harmonics and all the squares of spherical harmonics,

respectively, up to a given maximum angular momentum

of lmax and lmax2 such as lmax = 5 and lmax2 = 2 for the

14-point grid, lmax = 11 and lmax2 = 5 for the 110-point

grid, lmax = 21 and lmax2 = 10 for the 170-point grid,

lmax = 31 and lmax2 = 15 for the 350-point grid, lmax = 41

and lmax2 = 20 for the 590-point grid, and lmax = 53 and

lmax2 = 26 for the 974-point grid. Lebedev grids are fre-

quently available in quantum chemistry programs, for

example, Gaussian, NWChem, Q-Chem, Gamess, and

so on.

On the other hand, many different schemes have been

introduced into the problems related to the radial integra-

tion given in Eq. 8 [1, 8–19]. The earlier representative

radial grids are based on the standard method of the Gauss–

Chebyshev formula or the Euler–Maclaurin formula [1, 8–

10]. Recently, a multi-exponential grid [11] and a basis set

adaptive grid [12] have been developed for the purpose of

the efficient evaluation of radial integrals. The recent radial

grids also apply the Gaussian quadrature formula to the

calculation of numerical integrals. The performance for

some of these radial grids has been compared with each

other [10, 11, 13, 17, 19, 20].

To reduce sampling points required in numerical inte-

gration, a grid pruning technique has been considered

[8–10, 20–22]. The pruning procedure is performed by

assigning a different angular grid to each of radial points

instead of applying common angular grid to all the radial

points. The electron density distribution in a molecule

becomes almost spherically symmetrical at radial points

close to the nucleus of a given atom. Consequently, it is

possible to use angular grids of small size for the core

region in such a way that loss of accuracy is acceptably

small. The most of standard fixed grids employed in pop-

ular DFT codes are pruned for efficiency.

The sensitivity of molecular properties obtained by DFT

calculations to the integration grid meshes has been

investigated by the program packages of Gaussian, Molpro,

NWChem, Q-Chem, and Gamess [23–25]. The energetics,

geometries, vibrational frequencies, and infrared intensities

were examined for CCH radial, TaCl2, Ge2H5, Ge2H6,

HIr[PR3]4Cl? (R = H, CH3) [23]. It was reported that

problems with typical production grid sizes are particularly

acute for third-row transition metal systems, but may still

result in qualitatively incorrect results for a molecule as

simple as CCH. The use of pruned coarse grids for the

coupled perturbed Kohn–Sham equation caused spurious

negative eigenvalues in the Hessian matrix or artificial loss

of vibrational mode degeneracy. Sufficiently fine-meshed

grids for typical first- and second-row systems were no

longer adequate for systems involving very heavy elements

such as third-row transition metals [23]. The intermonomer

separations, binding energies, and potential energy surfaces

were studied for dispersion-bound dimers of Ne2, Ar2,
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(CH4)2, (C2H4)2, and (C6H6)2 using twenty-five density

functionals [24]. It was found that VSXC, B1B95, BB95,

BB1K, OLYP, and O3LYP predict oscillations and multi-

ple minima in the potential energy surfaces of some dimers

when standard grids are used. Increasing the integration

grid size resulted in smoother but not necessarily single-

minimum potential energy surfaces. This problem was

common to the meta-generalized gradient approximation

(meta-GGA) [24]. Energetic behavior for the G2/97 subset

including ninety-three neutral molecules was determined to

provide guidelines concerning the precision to be expected

for various integration grid quadratures [25]. The errors of

alcohols and thioalcohols did not go down nearly as far as

the full set for the BLYP computations with a large grid,

suggesting that few of these molecules could be computed

precisely. For the non-Abelian subset, pathological cases

with poor precision increased when higher precision was

sought through use of a larger grid quadrature [25]. While

the use of a much larger grid will avoid the problems

mentioned above, the computation time may be unaccept-

ably long. Therefore, it is needed to design an integration

grid for both of radial and angular parts that give a result of

the highest precision with the minimum number of sam-

pling points.

The use of double exponential (DE) formula as an

efficient numerical integration scheme has been proposed

by Takahashi and Mori [26]. The quadrature grid of the DE

formula is derived from a variable transformation followed

by an application of the trapezoidal rule with an equal

mesh size between grid points. The DE integration scheme

is characterized by the integral being transformed over

arbitrary intervals into an infinite integral in which the

transformed integrand double exponentially decays near

the end points of the transformed interval of integration. A

family of the transformations has been given according to

the type of integral [26–30].

The purpose of this paper is to demonstrate the char-

acteristic features of the DE formula in the application to

numerical integration of the radial electron distribution

function for atomic and diatomic molecular systems. It

has been reported that the error in the integration of

electron density is a reliable guide to the error expected

for the exchange and correlation energies [8, 9]. The

accuracy and convergence of the DE grids are compared

with those of the previous grids on the electron-counting

integral of noble gas atoms using the Gauss-type orbital

(GTO) and Slater-type orbital (STO) basis functions and

diatomic molecules composed of hydrogen, alkali metal,

transition metal, and halogen using the GTO basis

functions.

2 Radial grids in earlier studies

In this section, we briefly summarize the radial grids pro-

posed in earlier studies [1, 8–12]. The radial grid to eval-

uate the radial integral given in Eq. 8 is generated by

combining a quadrature rule with a variable transformation.

The transformation is necessary to map the variable of the

quadrature grid x on the variable of the radial grid r.

r ¼ at xð Þ ð9Þ

The mapping transformation includes an adjustable

parameter a which varies the distribution of sampling

points in the radial grid. The accuracy of numerical

integration, thus, depends on the mapping parameter a for

each atomic species. The Gauss–Chebyshev integration

rule of the second kind and the Euler–Maclaurin

summation formula (actually, the extended trapezoidal

rule), respectively, given by Eqs. 10 and 11 have been used

frequently as the n-point quadrature rule in the previous

studies [1, 8–10, 13, 14, 18, 20].

Z1

�1

1� x2
� �1=2

F xð Þdx � p
nþ 1

Xn

i¼1

sin2 ip
nþ 1

� �
F xið Þ

with xi ¼ cos
ip

nþ 1

� �
ð10Þ

Z1

0

F xð Þdx � 1

nþ 1

Xn

i¼1

F xið Þ with xi ¼
i

nþ 1
ð11Þ

Becke combined the transformation of Eq. 12 and the

quadrature rule of Eq. 10 [1]. The combination leads to the

radial grid given in Eq. 13 (B grid).

t xð Þ ¼ 1þ x

1� x
ð12Þ

Z1

0

f rð Þr2dr � 2a3 p
nþ 1

Xn

i¼1

1þ xið Þ5=2

1� xið Þ7=2
f rið Þ

ri ¼ a
1þ xi

1� xi

wi ¼ 2a3 p
nþ 1

1þ xið Þ5=2

1� xið Þ7=2

8>>><
>>>:

ð13Þ

The mapping parameter a was chosen to be half of the

Bragg-Slater radius, except for H atom for which the full

Bragg-Slater radius was applied.

Murray, Handy, and Laming investigated the transfor-

mation of Eq. 14 using the quadrature rule of Eq. 11 [8]. It

was reported that the best results are obtained with b = 2.

The radial grid for b = 2 is given in Eq. 15 (MHL grid).
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t xð Þ ¼ xb

1� xð Þb
ð14Þ

Z1

0

f rð Þr2dr � 2a3 1

nþ 1

Xn

i¼1

x5
i

1� xið Þ7
f rið Þ

ri ¼ a
x2

i

1� xið Þ2

wi ¼ 2a3 1

nþ 1

x5
i

1� xið Þ7

8>>><
>>>:

ð15Þ

It was found that a good value for the mapping parameter a
is the Bragg-Slater radius.

Treutler and Ahlrichs tested the combinations of four-type

transformations with the Gauss–Chebyshev integration rules

of the first and second kinds. A third formula for the Gauss–

Chebyshev integration rule which is a variant of the first kind

based on a different weight function was also examined [9]. It

was confirmed that the best performance is obtained by

applying the combination using the transformation of Eq. 16

and the quadrature rule of Eq. 10 for c = 0.6. The radial grid

with c = 0.6 is given in Eq. 17 (TA grid).

t xð Þ ¼ � 1þ xð Þc

ln 2
ln

1� x

2

� �
ð16Þ

The optimized values of the mapping parameter a for the

TA grid were reported in Ref. [9] for atoms H through to Kr.

Mura and Knowles examined the transformation of Eq. 18

combined with the quadrature rule of Eq. 11 for d = 2, 3,

and 4 [10]. By comparing the results obtained from the B,

MHL, and TA grids, it was concluded that the radial grid

with d = 3 is the most suitable grid for the radial integration.

The radial grid of d = 3 is given in Eq. 19 (MK grid).

t xð Þ ¼ � ln 1� xd
� �

ð18Þ
Z1

0

f rð Þr2dr � 3a3 1

nþ 1

Xn

i¼1

x2
i ln2 1� x3

i

� �
1� x3

i

f rið Þ

ri ¼ �a ln 1� x3
i

� �

wi ¼ 3a3 1

nþ 1

x2
i ln2 1� x3

i

� �
1� x3

i

8><
>:

ð19Þ

The recommended values of the mapping parameter a for

the MK grid were listed in Ref. [10] for atoms H through to

Zn.

Gill and Chien recently proposed the n-point radial grid

given in Eq. 20 (MultiExp grid) on the basis of the log-

squared quadrature rule of Eq. 21 and the transformation of

Eq. 22 [11].

Z1

0

f rð Þr2dr � a3
Xn

i¼1

wi

xi
f rið Þ

ri ¼ �a ln xi

wi ¼ a3 ai

xi

( ð20Þ

Z1

0

ln2 x F xð Þdx �
Xn

i¼1

aiF xið Þ ð21Þ

t xð Þ ¼ � ln x ð22Þ

The values of roots xi and weights ai associated with the

polynomials Qn(x) orthogonal on the interval [0, 1] were

reported up to the 20-point grid in Ref. [11]. Those values

are also available up to the 50-point grid via the web site

[31].

Kakhiani, Tsereteli, and Tsereteli also recently devel-

oped the basis set adaptive grid generated by an automatic

quadrature routine (AQR grid) [12]. In the AQR method,

the integral region in radial space r is divided into finite

intervals and a semi-infinite interval as [0, ?) = [0,

r1] ? [r1, r2] ? ��� ? [rn-1, rn] ? [rn, ?). The r1, r2, …,

rn-1, and rn correspond to the positions of maxima and

minima in the radial electron distribution represented with

the contracted GTO basis functions for an atom. The

standard formulas of the Gauss–Legendre quadrature and

the Gauss–Laguerre quadrature are directly used to carry

out the finite integrations and the semi-finite integration,

respectively. The number of grid points in each interval is

determined so as to provide user specified accuracy by

starting the iteration process with two points and

increasing the number of points by one with each sub-

sequent iteration.

Z1

0

f rð Þr2dr � a
ln 2

� �3 p
nþ 1

Xn

i¼1

1þ xið Þ1:8 1þ xið Þ1=2

1� xið Þ1=2
ln2 1� xi

2

� �
� 0:6

1� xið Þ1=2

1þ xið Þ1=2
ln3 1� xi

2

� �( )
f rið Þ

ri ¼ �a 1þxið Þ0:6
ln 2

ln 1�xi

2

� �
wi ¼ a

ln 2

� �3 p
nþ1

1þ xið Þ1:8 1þxið Þ1=2

1�xið Þ1=2 ln2 1�xi

2

� �
� 0:6 1�xið Þ1=2

1þxið Þ1=2 ln3 1�xi

2

� �n o
8>><
>>:

ð17Þ

648 Theor Chem Acc (2011) 130:645–669

123



The characteristic features of roots and weights were

discussed in Ref. [11] for the B, MHL, TA, MK, and

MultiExp quadrature schemes. The accuracies of these

radial grids were also studied in Ref. [11] for the linear

combination of Gaussian functions f(r) = exp(-r2), exp

(-r2) ? 10exp(-10r2), and exp(-r2) ? 10exp(-10r2) ?

100exp(-100r2) and for the radial electron distribution

function (spherically averaged radial electron density)

f(r) = 4pr2q(r) of He, Ne, and Ar atoms. The performance

of the AQR grid for the same set of integrands was reported

in Ref. [12] by comparison to the results of Ref. [11].

However, the analysis of Ref. [11] was carried out by using

the standardized grid with a small number of grid points

(25 or less) in which the value of mapping parameter a is

chosen so that the middle point of radial grids is unity for

each quadrature scheme. The dependence of accuracy on

the mapping parameter and the convergence of integrated

values to the exact value were not examined.

3 Double exponential formula and radial grids

In 1974, Takahashi and Mori introduced the double expo-

nential (DE) formula for numerical integration [26]. The

DE formula apply the uniformly divided trapezoidal rule

with mesh size h to infinite integral which is obtained by

suitable variable transformation of a given integrand. The

transformation function is chosen so as to change the lower-

and upper-limits of the interval for the original integral into

the minus and plus infinities for the transformed integral.

Zb

a

F yð Þdy ¼
Z1

�1

F t xð Þð Þ dt xð Þ
dx

dx

� h
X1

i¼�1
t0 xið ÞF t xið Þð Þ with xi ¼ ih ð25Þ

y ¼ t xð Þ where a ¼ t �1ð Þ; b ¼ t 1ð Þ ð26Þ

The DE formula adopts the mapping transformation such

that the transformed integrand decays double exponentially

at x ? ±?. The infinite summation appeared in Eq. 25,

therefore, can be truncated appropriately in actual

calculations.

The practical transformations of DE formula were given

in Refs. [26–30] for the finite, semi-infinite, and infinite

integrals. Three-type transformations were proposed for the

semi-infinite integral with the interval of 0 B y B ?.

y ¼ exp
p
2

sinh x
� �

or

exp 2 sinh xð Þ or exp p sinh xð Þ ð27Þ

y ¼ exp x� exp �xð Þð Þ or exp
1

2
x� exp �xð Þ

� �
ð28Þ

y ¼ ln exp
p
2

sinh x
� �

þ 1
� �

ð29Þ

In this study, we apply the transformations of Eqs. 27–

29 to the radial function in the following parameter-

depending forms. The radial quadrature grids using

Eqs. 30, 31, and 32 are, respectively, referred to as the

DE1, DE2, and DE3 grids hereafter.

r ¼ exp a sinh xð Þ ð30Þ
r ¼ exp ax� exp �xð Þð Þ ð31Þ
r ¼ ln exp a sinh xð Þ þ 1ð Þ ð32Þ

The DE grids are represented as Eqs. 33–35 for the DE1-

DE3 grids, respectively.

Z1

0

f rð Þr2dr � h
X1

i¼�1
a exp 3a sinh xið Þ cosh xi f rið Þ

ri ¼ exp a sinh xið Þ
wi ¼ ha exp 3a sinh xið Þ cosh xi

� ð33Þ

Z1

0

f rð Þr2dr � h
X1

i¼�1
exp 3axi � 3 exp �xið Þð Þ

� aþ exp �xið Þð Þf rið Þ
ri ¼ exp axi � exp �xið Þð Þ
wi ¼ h exp 3axi � 3 exp �xið Þð Þ aþ exp �xið Þð Þ

�
ð34Þ

Z1

0

f rð Þr2dr� h
X1

i¼�1
ln2 exp asinhxið Þþ 1ð Þ

� exp a sinhxið Þacoshxi

exp a sinhxið Þþ 1
f rið Þ

ri ¼ ln exp a sinhxið Þþ 1f g

wi ¼ h ln2 exp a sinhxið Þþ 1ð Þexp a sinhxið Þacoshxi

exp a sinhxið Þþ 1

8><
>:

ð35Þ

4 Computational details

In this study, the electron-counting integrals for He, Ne,

and Ar atoms were examined to compare the performance

of the DE grids with the performance of the B, MHL, TA,

MK, MultiExp, and AQR grids reported in Refs. [11] and

[12]. We also examined the electron-counting integral for

Kr atom to investigate the applicability of various radial

grids to heavy elements including occupied 3d shells. The

radial electron distribution of the atoms at the Hartree–

Fock level was calculated with the contracted GTO basis

functions of the 6-311G basis set [32–34] as used in Refs.

[11] and [12]. The SCF atomic orbitals were obtained from

the formatted checkpoint file of Gaussian03 program [35].
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We also calculated the radial electron distribution of the

atoms at the Hartree–Fock level using the primitive STO

basis functions reported in Ref. [36] as 4s for He atom,

7s5p for Ne atom, 10s8p for Ar atom, and 11s10p5d for Kr

atom. The SCF atomic orbitals were taken from Ref. [36].

The infinite summation of DE formula indicated in

Eqs. 33–35 was approximated by the finite sum of the

quadrature points corresponding to the radial points dis-

tributed from r = 10-7 to r = 10R (GTO) or 20R (STO),

where R denotes the atomic radius. We used the expectation

value of orbital radius for the outer valence orbital of the

atoms as the values of R: RHe = 0.927272 Bohr, RNe =

0.965273 Bohr, RAr = 1.662954 Bohr, and RKr = 1.951590

Bohr, which were obtained by the Hartree–Fock calcula-

tions with the primitive STO basis functions [36].

Furthermore, in addition to the atomic integrals descri-

bed above, the electron-counting integrals for LiH, NaH,

KH, Li2, Na2, K2, HF, HCl, HBr, F2, Cl2, Br2, LiF, NaCl,

KBr, [ScH]?, [MnH]?, and [CuH]? molecules were

examined by the TA, MK, and DE radial grids as test cases

for molecular integrals. A fairly large Lebedev angular grid

of 1202 grid points was combined with the radial grid to

clarify the performance of radial grid by minimizing the

error of angular grid. The electron density of the molecules

was computed at the DFT level approximated with the

B3LYP exchange and correlation functional [37, 38] in the

restricted (MH, M2, HX, X2, and MX with M = alkali

metal and X = halogen) or unrestricted ([MH]? with

M = transition metal) form using the contracted GTO

basis functions. The 6-31G** basis set [39–46] and the

VDZ basis set [47] were employed as the basis functions

for H, Li, Na, K, F, Cl, and Br atoms and for Sc, Mn, and

Cu atoms, respectively. The SCF molecular orbitals were

extracted from the formatted checkpoint file of Gaussian03

program [35]. The interatomic distances of the diatomic

molecules were optimized as shown in Table 1 by the

restricted and unrestricted B3LYP methods for closed-shell

(MH, M2, HX, X2, and MX) and open-shell ([MH]?)

molecules, respectively. All the stationary points were

confirmed to be energy minima with real vibrational fre-

quencies. The geometry optimization and the frequency

analysis were carried out by Gaussian03 program [35].

The infinite summation of quadrature estimation

appeared in Eqs. 33–35 for the DE formula was started at

the radial point of r = 10-7 and truncated at the radial

point of r = 10R (M in MH, M2, HX, X2, M in MX, and M

in [MH]?) or 20R (H in MH, X in MX, and H in [MH]?).

The following orbital radius [36] was applied to the values

of atomic radius R as RH = 1.5 Bohr, RLi = 3.873661

Bohr, RNa = 4.208762 Bohr, RK = 5.243652 Bohr, RF =

1.084786 Bohr, RCl = 1.842024 Bohr, RBr = 2.111601

Bohr, RSc = 3.959716 Bohr, RMn = 3.381917 Bohr, and

RCu = 3.330979 Bohr.

The exact value of the electron-counting integral gives

the number of electrons for a given atom or molecule. Each

of the occupied orbitals for the atoms and molecules

examined in this study was renormalized to ensure that the

exact numerical integration gives the exact electron num-

ber. The accuracy of numerical integration was measured

by the following index introduced in Ref. [11] and also

used in Ref. [12].

Accuracy ¼ � log10

Approx

Exact
� 1

				
				 ð36Þ

Accuracy is the quality of a quadrature approximation

(Approx) of an integral in comparison with the exact value

(Exact) which essentially gives the number of correct digits

in the quadrature estimation. The upper limit of Accuracy

is 15.7 obtained from logarithm of the machine epsilon in

double precision of Fortran 90.

For atomic integrals, the changes in Accuracy with the

variation of the mapping parameter a and the number of

grid points nr were investigated for the B, MHL, TA, MK,

MultiExp grids as well as for the DE1, DE2, and DE3

grids. The value of a was varied by 0.1 from amin to amax

for each radial grid: amin = 0.1 and amax = 5.1 for the B

and MHL grids, amin = 0.5 and amax = 5.5 for the TA,

MultiExp, and DE grids, and amin = 2.5 and amax = 7.5

for the MK grid. As for molecular integrals, the conver-

gence behavior of Accuracy was confirmed for the TA,

MK, DE1, DE2, and DE3 grids with the fixed value of a
listed in Table 2 for each atom. The recommended value of

a reported in Refs. [9] and [10] was used for the TA and

MK grids, respectively. Concerning the MK grid, we

adopted a = 5.0 for Br atom since a = 7.0 and a = 5.0

have been applied to elements of the groups I (except for H

atom) and II and to the other elements, respectively, for

atoms H through to Zn [10]. The same value of a was

Table 1 Optimized interatomic

distance of LiH, NaH, KH, Li2,

Na2, K2, HF, HCl, HBr, F2, Cl2,

Br2, LiF, NaCl, KBr, [ScH]?,

[MnH]?, and [CuH]? molecules

at B3LYP level

Molecule Distance (Å) Molecule Distance (Å) Molecule Distance (Å)

LiH 1.615 NaH 1.882 KH 2.284

Li2 2.727 Na2 3.040 K2 3.966

HF 0.925 HCl 1.286 HBr 1.423

F2 1.406 Cl2 2.044 Br2 2.335

LiF 1.552 NaCl 2.376 KBr 2.872

[ScH]? (2D) 1.756 [MnH]? (6R) 1.598 [CuH]? (2R) 1.506
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employed for all the atoms in the DE integration without

fine tuning of the radial grid for each atom. The number of

nr was varied by 10 from nr = 30 to nr = 200 for all the

radial grids except for the MultiExp grid which are avail-

able up to nr = 50.

Becke has defined the nuclear weight function, wA r~ð Þ in

Eq. 3, by introducing a cutoff profile between two nuclear

centers [1]. A sequence of cutoff profiles can be deter-

mined successively by an iterative procedure as continu-

ous analogs to the step function. It has been found that the

iteration order k = 3 is appropriate for general applica-

tions [1]. However, it has been also reported that the

convergence of integrated results to high accuracy

(Accuracy [ 15) is faster for k = 4 or 5 than for k = 3 in

the case of H2 molecule [16]. Therefore, we confirmed

using the TA and MK quadrature schemes that k = 5

adopted in this study is most efficient among k = 3, 4, and

5 for all the diatomic molecules examined in this study.

Atomic size adjustments proposed in Refs. [1] or [9] were

not applied to numerical integration of the heteronuclear

diatomic molecules.

5 Results and discussion

5.1 Electron-counting integral for atom

We show the changes in Accuracy of each radial grid for

the numerical integration of the radial electron distribution

represented with the GTO and STO basis functions in

Figs. 1, 2, 3, and 4 and in Figs. 5, 6, 7, and 8, respectively,

as Figs. 1 and 5 for He atom, Figs. 2 and 6 for Ne atom,

Figs. 3 and 7 for Ar atom, and Figs. 4 and 8 for Kr atom.

Accuracy of each radial grid with the mapping parameter

which gives the highest average value of Accuracy over the

30-point to 200-point grids (over the 30-point to 50-point

grids for the MultiExp grid) is also listed in Online

Resources 1 and 2 as Tables S1 and S2 for the GTO and

STO calculations, respectively.

All the quadrature schemes work well for all the cases

of four atoms using the GTO and STO basis functions

from a viewpoint that all the quadrature approximations of

Figs. 1, 2, 3, 4, 5, 6, 7, and 8 converge toward the exact

integration. However, different characteristic features are

confirmed from Figs. 1, 2, 3, 4, 5, 6, 7, and 8 in the

dependence of numerical accuracy on the mapping

parameter and in the convergence of integrated values

with increasing the number of grid points. The B and

MHL grids have narrow sweet spot of the mapping

parameter even for the large-point grids, whereas the TA,

MK, and DE grids with the large number of grid points are

relatively stable (flat) over the wide range of the mapping

parameter. The changes in Accuracy of the B and MHL

grids indicate similar behavior for the variation of map-

ping parameter and for the increment of grid points that

the convergence to the exact result is slow in comparison

with the TA, MK, and DE grids. The MultiExp grid with

the optimal value of the mapping parameter results in

relatively high Accuracy for the 30-point grid, but the

improvement of Accuracy by applying the 40-point and

50-point grids is not remarkable especially for the STO

calculations. The TA and MK grids show good perfor-

mance over the 30-point to 200-point grids by selecting

the value of mapping parameter appropriately in which the

MK grids is better than the TA grids regarding the accu-

racy and the convergence as found from Tables S1 and S2

(Online Resources 1 and 2).

The grid ranking on the basis of Accuracies listed in

Tables S1 and S2 (Online Resources 1 and 2) is summa-

rized in Tables 3 (GTO) and 4 (STO) for the radial grids

with nr = 30, 40, and 50. The GTO results show that the

DE schemes tend to be more accurate than the B or MHL

scheme and less accurate than the TA or MK scheme,

except for Ar (nr = 30) and Kr (nr = 30, 40, and 50) atoms

for which the DE2 or DE3 scheme is less accurate than the

B and MHL schemes. As for the STO results, the DE grids

are similar to or higher than the B and MHL grids in

Accuracy. Although the DE2 and DE3 grids give the

highest Accuracy for He atom, the DE grids are lower than

the TA or MK grid in Accuracy for Ne (nr = 30), Ar

(nr = 30 and 40), and Kr (nr = 30 and 40) atoms with

sparse grids. The DE1 grid is also lower than the TA and

MK grids in Accuracy for He atom with nr = 30 and 40.

However, the DE results converge to the exact value with

Accuracy = 15.7 faster than the TA and MK results for

Table 2 Value of mapping parameter a for the TA, MK, DE1, DE2,

and DE3 grids used to evaluate the electron-counting integrals of LiH,

NaH, KH, Li2, Na2, K2, HF, HCl, HBr, F2, Cl2, Br2, LiF, NaCl, KBr,

[ScH]?, [MnH]?, and [CuH]? molecules

Atom TAa MKb DE1 DE2 DE3

H 0.8 5.0 1.2 1.0 2.4

Li 1.8 7.0 1.2 1.0 2.4

Na 1.4 7.0 1.2 1.0 2.4

K 1.5 7.0 1.2 1.0 2.4

F 0.9 5.0 1.2 1.0 2.4

Cl 1.0 5.0 1.2 1.0 2.4

Br 0.9 5.0 1.2 1.0 2.4

Sc 1.3 5.0 1.2 1.0 2.4

Mn 1.2 5.0 1.2 1.0 2.4

Cu 1.1 5.0 1.2 1.0 2.4

a Values of mapping parameter for TA grid are taken from Ref. [9]
b Values of mapping parameter for MK grid are taken from Ref. [10]

except for Br
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heavy elements of the Ar and Kr atoms. The smallest

number of grid points with Accuracy [ 15 extracted from

Tables S1 and S2 (Online Resources 1 and 2) is shown in

Table 5 for the TA, MK, and DE grids. The fast conver-

gence of the DE formula is more significant in the STO

basis functions than in the GTO basis functions. Among the
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Fig. 1 Changes in Accuracy of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids for the electron-counting integral of He atom using

GTO basis functions
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DE grids, the convergence becomes slower for the DE3

grid than for the DE1 and DE2 grids in the GTO calcula-

tion and slower for the DE1 grid than for the DE2 and DE3

grids in the STO calculation.

We compare the results obtained in this study with the

results reported in Refs. [11] and [12]. Accuracies of the

standardized grids for the B, MHL, TA, MK, and MultiExp

schemes were summarized in Ref. [11] for the electron-
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Fig. 2 Changes in Accuracy of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids for the electron-counting integral of Ne atom using

GTO basis functions
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counting integral of the He, Ne, and Ar atoms with the GTO

basis functions. Accuracy of the AQR scheme was also listed

in Ref. [12] for the same integrals. For each radial grid, the

optimal value of mapping parameter is chosen based on the

average Accuracy in this study while the value of map-

ping parameter is fixed to the standardized value in Ref. [11].
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Fig. 3 Changes in Accuracy of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids for the electron-counting integral of Ar atom using

GTO basis functions
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The grid ranking was estimated using 25 or less grid

points as follows: MHL \ B \ TA & MK\ MultiExp for

He atom and MHL \ TA & MK \ MultiExp & B for Ne

atom [11]. As for Ar atom, it was described that although it is

no longer possible to rank the grids unambiguously, the

MultiExp grid remains competitive [11]. However, by taking
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into account the optimization of the mapping parameter,

Figs. 1, 2, 3, 4, 5, 6, 7, and 8 reveal that the TA and MK grids

as well as the DE grids are superior to the B and MHL grids

and probably to the MultiExp grid.

Accuracy of the AQR grid reported in Ref. [12] is

compared with Accuracies of the TA, MK, and DE2

grids given in Table S1 (Online Resource 1). We list

the results for He, Ne, and Ar atoms in Table 6. The

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0

A
cc

ur
ac

y

Mapping parameter

He atom with B grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0

A
cc

ur
ac

y

Mapping parameter

He atom with MHL grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5

A
cc

ur
ac

y

Mapping parameter

He atom with TA grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  2.5  3.0  3.5  4.0  4.5  5.0  5.5  6.0  6.5  7.0  7.5

A
cc

ur
ac

y

Mapping parameter

He atom with MK grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5

A
cc

ur
ac

y

Mapping parameter

He atom with MultiExp grid

  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5

A
cc

ur
ac

y

Mapping parameter

He atom with DE1 grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5

A
cc

ur
ac

y

Mapping parameter

He atom with DE2 grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid

  0.0
  1.0
  2.0
  3.0
  4.0
  5.0
  6.0
  7.0
  8.0
  9.0
 10.0
 11.0
 12.0
 13.0
 14.0
 15.0
 16.0

  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5

A
cc

ur
ac

y

Mapping parameter

He atom with DE3 grid

200-point grid
150-point grid
100-point grid
  70-point grid
  50-point grid
  30-point grid
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AQR results seem to be somewhat better than the TA

and MK results for simple radial electron distribution of

the He atom without shell structure. Concerning the Ne

and Ar atoms with shell structure, the effectiveness of

the basis set adaptive grid over the fixed grids may be

unclear.
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Fig. 6 Changes in Accuracy of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids for the electron-counting integral of Ne atom using
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5.2 Properties of DE formula

An overall review article of the DE formula has been

published and references therein [48]. The contents about

error estimation in numerical integration, variable trans-

formation in numerical integration, discovery of the

double exponential transformation, developments of the

DE formula, and DE sinc methods and further
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developments have been summarized [48]. We briefly

describe fundamental properties on the DE formula in the

next paragraph.

It is proved from the error estimation of typical

quadrature formulas that the trapezoidal formula with an

equal mesh size is optimal for numerical integration of an
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analytic function over (-?, ?). A variable transforma-

tion that maps the original interval of integration on

(-?, ?) is introduced to take advantage of this

optimality. The discretization and truncation errors of

such formula are discussed in relation to the decay

behavior for the transformed integrand. It is shown that

Table 3 Grid ranking of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids with nr = 30, 40, and 50 for the electron-counting integrals

of He, Ne, Ar, and Kr atoms using GTO basis functionsa

Atom nr Grid ranking

He 30 B, MHL (5) \ DE2, DE1 (7) \ DE3 (8) \ MK (9) \ TA (10) \ MultiExp (12)

40 B (7) \ DE1 (8) \ MHL, DE2 (9) \ DE3 (12) \ TA, MK (13) \ MultiExp (14)

50 B, MHL (9) \ DE1 (10) \ MultiExp, DE2 (13) \ DE3 (14) \ TA (15) \ MK (16)

Ne 30 B, MHL (4) \ DE3 (5) \ DE1, DE2, MultiExp (6) \ TA, MK (7)

40 MHL, B (6) \ DE2, DE3 (7) \ DE1, MultiExp (8) \ TA, MK (9)

50 B (7) \ MHL (8) \ DE3, TA, DE1 (9) \ MultiExp, DE2 (10) \ MK (11)

Ar 30 DE2, DE3 (4) \ MHL, B, MultiExp, DE1 (5) \ TA (7) \ MK (8)

40 B, MHL (5) \ DE1, DE3 (6) \ MultiExp, DE2 (7) \ MK, TA (8)

50 B (6) \ MHL, MultiExp (7) \ TA, DE2 (8) \ DE3, MK (9) \ DE1 (10)

Kr 30 DE3 (3) \ DE2 (4) \ B, MHL, TA, DE1 (5) \ MultiExp, MK (6)

40 DE3 (4) \ MultiExp, MHL, DE2, DE1, B (6) \ TA, MK (7)

50 MultiExp, DE3 (6) \ DE2, MHL (7) \ DE1 (8) \ B, TA, MK (9)

a Values in parentheses are order of Accuracy

Table 4 Grid ranking of the B, MHL, TA, MK, MultiExp, DE1, DE2, and DE3 grids with nr = 30, 40, and 50 for the electron-counting integrals

of He, Ne, Ar, and Kr atoms using STO basis functionsa

Atom nr Grid ranking

He 30 B (7) \ MHL (8) \ DE1 (9) \ TA, MultiExp (12) \ MK (14) \ DE3 (15) \ DE2 (16)

40 B (8) \ MHL (10) \ DE1 (12) \ TA (13) \ MultiExp (14) \ MK, DE2, DE3 (15)

50 B (10) \ MHL (12) \ MultiExp (13) \ TA, DE1 (14) \ DE3, DE2, MK (15)

Ne 30 B (6) \ DE1 (8) \ MHL (9) \ DE3 (10) \ TA, DE2 (11) \ MK, MultiExp (12)

40 B, MHL (8) \ TA, MultiExp (12) \ DE1 (13) \ DE3 (14) \ MK (15) \ DE2 (16)

50 B (9) \ MHL (10) \ MultiExp (12) \ TA (13) \ DE1 (14) \ MK (15) \ DE2, DE3 (16)

Ar 30 B, MHL (6) \ DE3 (7) \ DE1, DE2 (8) \ TA (10) \ MK (11) \ MultiExp (12)

40 B, MHL (7) \ DE1 (10) \ DE3, TA, MultiExp (11) \ DE2, MK (13)

50 B (8) \ MHL (10) \ DE1 (11) \ MultiExp, TA (12) \ MK (14) \ DE3 (15) \ DE2 (16)

Kr 30 DE3, B, MHL, DE1, DE2 (6) \ TA (9) \ MultiExp (10) \ MK (11)

40 B, MHL (7) \ DE1, DE3 (9) \ TA, MultiExp, DE2 (11) \ MK (14)

50 B (7) \ MHL (8) \ MultiExp, TA (11) \ DE1, DE2 (12) \ MK (13) \ DE3 (14)

a Values in parentheses are order of Accuracy

Table 5 The smallest number

of grid points with

Accuracy [ 15 for the electron-

counting integrals of He, Ne,

Ar, and Kr atoms by the TA,

MK, DE1, DE2, and DE3 grids

Basis function Atom TA MK DE1 DE2 DE3

GTO He 60 50 80 70 60

Ne 90 80 90 80 100

Ar 130 110 100 100 130

Kr 150 120 100 110 140

STO He 80 40 60 30 30

Ne 90 60 60 40 50

Ar 110 80 70 50 60

Kr 130 90 70 60 60
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the overall error becomes large in both cases where the

decay of the transformed integrand is too fast and too

slow. Consequently, the transformation function should

be an optimal decay between these two cases. A sequence

of transformations which gives a different decay is

examined analytically and compared numerically. It is

confirmed that the double exponential decay is optimal.

The error of the DE formula is expressed as O(exp(-cN/

logN), where N is the number of sampling points (c is a

positive constant). Therefore, the DE grid converges fast

as N becomes large. It is concluded that the trapezoidal

formula combined with the DE transformation is optimal

in the sense that there exists no quadrature formula

obtained by variable transformation whose error decays

faster than the DE formula for large N. The DE formula

is successfully used in the fields of molecular physics,

fluid dynamics, statistics, civil engineering, financial

engineering, the boundary element method, and so on.

Examples for applications of the DE integration in these

fields are found in Ref. [48].

In the previous subsection, we demonstrated that the

sweet spot of the mapping parameter is relatively wide for

the DE formula on the basis of the electron-counting

integrals for noble gas atoms. It is, thus, expected that the

DE formula is useful for molecular integrals without fine

tuning of the DE grids for each atom. The results of the

electron-counting integrals for diatomic molecules are

given in the following subsection. Further study of multi-

center integration with the DE grids is now in progress

for other molecular systems including polyatomic mole-

cules larger than diatomic molecules. We will report the

results elsewhere. The DE formula is also applicable to

the AQR method instead of the Gauss–Legendre and

Gauss–Laguerre formulas in order to carry out the

numerical integration over each of subintervals since the

required DE transformation has been proposed already

[26–30].

5.3 Electron-counting integral for diatomic molecule

We performed numerical integration of the electron-

counting integrals for LiH, NaH, KH, Li2, Na2, K2, HF,

HCl, HBr, F2, Cl2, Br2, LiF, NaCl, KBr, [ScH]?, [MnH]?,

and [CuH]? molecules as demonstrative applications of the

DE formula to multi-center integrals. The ionically bonded

(LiH, NaH, KH, LiF, NaCl, and KBr) and covalently

bonded (Li2, Na2, K2, HF, HCl, HBr, F2, Cl2, Br2) diatomic

molecules including alkali metals and halogens up to third-

row elements were tested to examine the effects of dif-

ferent atomic environment in molecules on the perfor-

mance of each radial grid. The examinations of alkali metal

hydrides and alkali metal hologenides using the DE for-

mula are valuable since it has been described in Ref. [10]

that all current quadrature schemes give very poor results

with fine grids for LiH and LiF molecules. The transition

metal hydride cations containing Sc, Mn, and Cu atoms

were also examined to investigate whether different num-

ber of 3d electrons affects the performance of each radial

grid or not. In this subsection, we compare the results

obtained from the TA, MK, DE1, DE2, and DE3 calcula-

tions which give accurate numerical integration of the

electron-counting integrals for atomic system.

Table 6 Accuracy of the TA, MK, DE2, and AQR grids for the

electron-counting integrals of He, Ne, and Ar atoms using GTO basis

functions

Atom nr TA MK DE2 AQRa

He 30 9.7 9.3 7.1 9.8

33 11.5

37 12.4

39 13.8

40 12.8 13.1 9.1

Ne 30 6.9 7.0 5.9

34 7.4

39 8.8

40 9.1 9.3 7.0

45 9.8

50 9.2 10.7 9.9

52 10.7

55 11.7

57 12.8

60 12.0 13.2 10.6

69 14.1

70 12.3 14.0 13.6

Ar 30 6.5 7.6 4.2

31 6.0

40 8.3 8.1 7.2

41 7.0

50 8.4 9.1 8.4 7.8

58 9.8

60 9.6 9.9 10.6

63 10.0

69 10.8

70 9.9 10.4 11.5

79 12.4

80 12.0 12.4 13.0

85 13.4

89 13.7

90 11.8 12.5 14.4

a Accuracies of AQR grid are taken from Ref. [12]
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Figures 9, 10, 11, 12, 13, and 14 show the convergence

behavior of each quadrature approximation for the

numerical integration of the electron density as Fig. 9 for

MH (M = Li, Na, K) molecules, Fig. 10 for M2 (M = Li,

Na, K) molecules, Fig. 11 for HX (X = F, Cl, Br) mole-

cules, Fig. 12 for X2 (X = F, Cl, Br) molecules, Fig. 13 for

MX (MX = LiF, NaCl, KBr) molecules, and Fig. 14 for

[MH]? (M = Sc, Mn, Cu) molecules. Full list of Accuracy

using TA, MK, and DE radial grids is also given in Online

Resources 3, 4, and 5 as Tables S3, S4, and S5 for MH and

M2, HX and X2, and MX and [MH]? molecules,

respectively.

It is clearly found from Figs. 9, 10, 11, 12, 13, and 14

that the TA and MK radial grids give significantly poor

convergence of Accuracy for the MH and MX molecules

compared with the M2, HX, and X2 molecules as men-

tioned in Ref. [10]. The TA and MK radial grids also show

slow convergence for the [MH]? molecules. It is obvious

that the convergence behavior of the DE radial grids is

better than the TA and MK radial grids for these
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Fig. 9 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of LiH, NaH, and KH molecules
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molecules. Although all the radial grids need more sam-

pling points to converge by exchanging the atom con-

structing diatomic molecules from light to heavy element,

this trend of slow convergence is not remarkable for the

DE1, DE2, and DE3 quadrature schemes than for the TA

and MK quadrature schemes as seen in Figs. 10 (M2), 11

(HX), and 12 (X2). The performance of the MK integra-

tion becomes especially poor for the molecules with third-

row element in contrast to the molecules with first- or

second-row element (Figs. 10, 11, 12). Moreover, Accu-

racy of the TA and MK formulas for transition metal

hydride cations largely depends on atomic species as

Cu [ Mn � Sc, whereas the DE1, DE2, and DE3 for-

mulas show similar behavior of Accuracy for these tran-

sition metals, respectively (Fig. 14).

We extract the smallest number of radial grid points

required to achieve Accuracy [ 15 from Tables S3–S5

(Online Resources 3–5) in Table 7. The integrated values
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Fig. 10 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of Li2, Na2, and K2 molecules
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of the TA and MK results for alkali metal hydrides, alkali

metal halogenides, and transition metal hydride cations do

not converge to high accuracy (Accuracy [ 15) except for

the [MnH]? and [CuH]? molecules with the MK scheme

even if the 200-point radial grid is used. On the other hand,

Accuracy of the DE radial grids converges to the exact

value for all the molecules within the numbers of radial

grid points examined in this study. It is confirmed form a

comparison between the TA and MK radial grids that the

TA grid is efficient for the Li2, Na2, K2, and KBr molecules

while the MK grid is efficient for the other molecules,

indicating the performance of radial grids depends on

molecular species. The required number of sampling points

for the M2, HX, and X2 molecules to obtain the results with

high accuracy (Accuracy [ 15) ranges from 90 to 170 for

the TA grid and from 80 to 190 for the MK grid. The

required number for all the molecules is 90–180, 110–150,

and 110–180 for the DE1, DE2, and DE3 grids,
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Fig. 11 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of HF, HCl, and HBr molecules
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respectively. The molecular dependence of the DE2 grid is

relatively small compared with the other grids. The DE2

grid also converges to the exact value faster than the TA or

MK grid as follows: faster than the MK grid for Na2

molecule, faster than the TA and MK grids for K2 mole-

cules, faster than the TA grid for HBr molecule, faster than

the TA and MK grids for Br2 molecule, demonstrating that

the DE2 formula improves the convergence of Accuracy

for the molecules with heavy element. The performance of

the DE1 grid is similar to or better than the DE2 grid

except for the Li2, Na2, and K2 molecules. The conver-

gence of the DE3 grid becomes slow with the replacement

of light atom by heavy atom from first- to third-row ele-

ment in comparison with the DE1 and DE2 grids.

The average value of Accuracy over all the diatomic

molecules is summarized in Table 8 for each radial grid

together with the standard deviation of Accuracy. The TA

and MK quadrature estimations are superior to the DE
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Fig. 12 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of F2, Cl2, and Br2 molecules
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quadrature estimations for radial grids smaller than the

100-point grid, while the DE integration schemes are

superior to the TA and MK integration schemes for radial

grids larger than the 100-point grid. Moreover, the dis-

persion of Accuracy concerning the radial grids with 70 or

more grid points is smaller in the DE radial grids than in

the TA and MK radial grids. Especially for the 150- to

200-point radial grids, the standard deviations of Accuracy

for the DE grids are very small, indicating that the behavior

of the DE grids is stable for all the molecules in contrast to

the TA and MK grids.

6 Concluding remarks

In this study, we investigated the performance of the DE

formula on the numerical integration of the radial electron

distribution function for atomic and diatomic molecular

systems represented by the GTO or STO basis functions.

Three-type DE transformations were introduced into the

radial quadrature scheme to generate new radial grids. The

accuracy and convergence of the DE grids were compared

with those of the B, MHL, TA, MK, and MultiExp grids for

the electron-counting integrals of He, Ne, Ar, and Kr atoms
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Fig. 13 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of LiF, NaCl, and KBr molecules
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and of LiH, NaH, KH, Li2, Na2, K2, HF, HCl, HBr, F2, Cl2,

Br2, LiF, NaCl, KBr, [ScH]?, [MnH]?, and [CuH]?

molecules.

The results reveal that fast convergence of the inte-

grated values to the exact value is achieved by applying

the DE formula. The DE grids show similar or higher

accuracies than the other grids particularly for the Kr

atom. Furthermore, the DE-Lebedev quadrature schemes

give stable performance for all the diatomic molecules

compared with the TA- and MK-Lebedev quadrature

schemes. Especially, the DE integrations converge fast to

high accuracy even for alkali metal hydrides, alkali metal

halogenides, transition metal hydride cations, or diatomic

molecules with heavy element in contrast to poor con-

vergence of the TA and MK integrations. It is suggested

that the DE transformations have potential ability to

improve the reliability and efficiency of the numerical

integration for energy functionals if combined with an
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Fig. 14 Convergence behavior of Accuracy by the TA, MK, DE1, DE2, and DE3 radial grids combined with Lebedev angular grid (nX = 1202)

for the electron-counting integrals of [ScH]?, [MnH]?, and [CuH]? molecules
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accurate angular grid. In addition, it may be possible to

further improve the DE radial grids by optimizing the

mapping parameter for each atom.
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